DORTIR II POSTER COLLECTION

CORTIR II PROJECT FINAL 2023

INDEX

1 TORSION - OPERATIONAL CO

- 2 TORSION TESTING VS OPE
- **3** SHEAR WEB DISBOND
- 4 NIFIS
- 5 CAR TOOL
- 6 BLADE HANDBOOK

ONDITIONS p.4	
P.6	
p.8	
р.10	
p.12	
p.14	
CORTIR	

TORSION ON BLADES

Impact of torsion on blades under operational conditions

Root bending moments

tangential forces and gravity are working on the flapwise deflected blade, creating torsion.

Flapwise aerodynamic tangential forces and gravity are working on the edgewise deflected blade, creating torsion.

Cross sectional shear distortion

breathing due to torsion

Out-of-plane deformations causes interlaminar stresses, resulting in skin debonding.

TORSION ON BLADES

Impact of torsion on blades: Testing vs Blades in operation

BLADE IN TEST ENVIRONMENT vs BLADE IN OPERATION

The application of edgewise and flapwise load components separately do not represent realistic scenarios, as these load components work on the blade at the same time in the field.

of edgewise and flapwise load components lead to torsional moments. The torsional loads are triggering cross sectional shear distortion and breathing in the transition zone and max chord. The out-of-plane deformations of unsupported panels lead to critical blade damages.

Direct impact on the blade's transition zone

Blade size

SHEAR WEB DISBOND RTZ SOLUTION

SHEAR WEB DISBOND

AIM

Reduce local deformations and peeling stresses

Parameters driving shear web disbond

Influence on blade size

Different pressure side and suction side curvatures

NIFIS New innovative field inspection strategies

CURRENT APPROACH FUTURE HOLISTIC APPROACH **NGIR NIFIS** Inspection Non-destructive methods testing On-site inspection Inspection Field data templates ISP WTO ISP WTO Blade scaling CAR tool Damage Damage trends Inspection report report template Damage tolerance Inspection Action Strategic Database approach plan report action plan Supporting decision making towards risk-based maintenance strategy Supporting inspections Damage categorization scheme Blade hotspots Stop Run Run CAR tool 21 ROOT MAX CHORD MID SPAN Data and expert Failure mode illustrations **Repair solutions** knowledge face damage, not iching laminate nt damage, surfac Scaling trends

TIMELINE	2021 (Sep.)	2022 (Jan.)	2022 (May)	2022 (Sep.)
	 Expectation's alignment Objective's definition NIFIS interface overview Damage tolerance initiation (maintenance strategies) 	 Selection of monitoring techniques Selection of inspection methods Data analysis: BBF and G2D Knowledge collection from FEM simulations for damage tolerance Setting up website/app 	 First Damage Categorization Scheme NDT analysis on field conditions First guidelines draft for maintenance strategies First draft for inspection and repair reports templates 	 Development of ISP blade course Holistic CAR Tool integration Scaling trends integration Damage tolerance integration

2023 (Jan.)

- Gather data from testing
- Holistic inspection and repair
- reports templates
- Maintenance strategies for Aft Shear Web Disbonding

EUDP C Bladena 🚽 KIRTXTHOMSEN

CAR TOOL A DECISION SUPPORT TOOL

TRANSFORMATION FROM MINIMAL VIABLE PRODUCT TO HOLISTIC TOOL

CAR TOOL VALUES

Operational & Maintenance decisions Preventive maintenance

Risk considerations Risk and reliability considered in the decision-making

Cost & optimal maintenance strategy More strategic decisions for WTOs

Documentation

EUDP C Bladena 🚽 KIRTXTHOMSEN

THE BLADE HANDBOOK

A SHARED LINGO FOR THE FUTURE OF WIND

THE WHOLE VALUE CHAIN - FROM ACADEMIA TO HEAVY INDUSTRY

One aligned lingo - better collaboration between stakeholders - bring down silos

- accelerate the green transition

POSTER COLLECTION

CORTIR II Project

The second phase of the CORTIR project builds on top and extends significantly the outcomes of the first phase. Its main deliverables are a new retrofit solution designed for high forces in the Root-Transition Zones (RTZ) of blades, a new innovative state-of the art operation and maintenance strategy and lastly further developments of the Cost and Risk Tool (CAR Tool).

CORTIR Partners DTU | DTU Mechanical Engineering Department of Mechanical Engin A RWE CODAN acciona enel AALBORG UNIVERSITET ECC CedF vento 1 FLEXWIND Danwind. EWİİ NORDEX Statkraft **GEV** NORTHLAND ARISE engie

Editor Bladena

